Chromone Studies. Part 13.¹ Synthesis and Electron-Impact Mass Spectrometric Studies of 5-Hydroxy-2-isopropyl-7-methoxychromone, a Constituent of the Medicinal Plant *Baeckea frutescens*, and Side-Chain Analogues

Christopher A. Gray, Perry T. Kaye,* and Aloysius T. Nchinda

Department of Chemistry, Rhodes University, Grahamstown, 6140, South Africa

Received March 7, 2003

5-Hydroxy-2-isopropyl-7-methoxychromone (1d), a chromone constituent isolated from the aerial parts of *Baeckea frutescens*, and four analogues (1a-c and 1e), all of which exhibit toxicity to the brine shrimp *Artemia salina*, have been prepared from 2',4',6'-trihydroxyacetophenone. High-resolution mass spectrometric analysis has permitted elucidation of the fragmentation patterns exhibited by these systems following electron-impact ionization.

Chromones are widely distributed in nature, and many are known to possess useful medicinal properties.² Among these are the chromone derivatives, granulosin [7,8-(methylenedioxy)-2-propylchromone], isolated by Schiff and coworkers³ from the bark of *Galipea granulosa*, and 5-hydroxy-2-isopropyl-7-methoxychromone **1d**, recently isolated by Tsui and Brown⁴ from the aerial parts of *Baeckea frutescens* L., a plant used in traditional Chinese medicine for treating rheumatism and snake-bite. As part of an ongoing study of chromone systems, we previously described an efficient synthesis of granulosin and structural analogues⁵ and now report the preparation of 5-hydroxy-2-isopropyl-7-methoxychromone (**1d**) and several analogues (**1a**-**c** and **1e**), their toxicity to the brine shrimp *Artemia salina*, and an investigation of their EIMS fragmentation patterns.

Retrosynthetic analysis suggested that synthesis of 1d could be achieved via the condensation of ethyl 2-methylpropanoate (3) with 2',6'-dihydroxy-4'-methoxyacetophenone (2), obtainable, in turn, from 2',4',6'-trihydroxyacetophenone (4) (Scheme 1). However, attempted methylation of the commercially available 4, using 1 equiv of dimethyl sulfate and 1 equiv of K₂CO₃, as described by Huang et al.,6 gave a mixture, shown by ¹H NMR analysis to comprise the desired 2',6'-dihydroxy-4'-methoxyacetophenone (2; <40%), the dimethylated analogue (5), and starting material. Consequently, it was decided to exploit the facile dimethylation and attempt selective demethylation of the 6'-methoxy group later in the synthetic sequence. The resistance of the 2'-hydroxy group to methylation under these conditions is attributed to hydrogen-bonded chelation with the acetyl carbonyl oxygen. The existence of such hydrogen bonding is clearly evident in the significant deshielding of the 2-hydroxyl proton ($\delta_{\rm H}$ ca. 13.9) in the ¹H NMR spectrum of 2'-hydroxy-4',6'-dimethoxyacetophenone (5). Following this strategy (Scheme 2), reaction of 4 with 2 equiv of dimethyl sulfate and 2 equiv of anhydrous K₂CO₃ in acetone under reflux for 5 h gave 57 in 90% yield. The ¹³C NMR spectrum of 5 revealed nine distinct carbon signals, instead of the expected 10, the intense signal at $\delta_{\rm C}$ 55.4 reflecting coincidence of the two methoxy carbon signals, a conclusion supported by COSY, HMQC, and HMBC data.

The dimethylated intermediate (5) was then treated with 2 equiv of NaOEt in EtOH to afford an enolate which, on

 a Reagents: (i) Me_2SO_4 (1 equiv), K_2CO_3 (1 equiv), acetone; (ii) Me_2SO_4 (2 equiv), K_2CO_3 (2 equiv), acetone; (iii) NaOEt, EtOH; (iv) RCO_2Et; (v) AcOH, H_2SO_4; (vi) Ac_2O, HI, 115 °C, 30 min.

reaction with the series of ethyl carboxylate esters [RCO₂-Et; $R = CH_3$, CH_3CH_2 , $CH_3CH_2CH_2$, $(CH_3)_2CH$, PhCH₂], gave mixtures, indicated by ¹H NMR spectroscopy, to contain the corresponding *C*-acylated products (existing as the respective enol tautomers, formulated as structures **6a**-**e**) and their cyclized derivatives **7a**-**e**. Treatment of these mixtures with HOAc and H₂SO₄ afforded the 5,7dimethoxychromone derivatives **8a**-**e**. Selective demethylation at the C-5 position was achieved in yields ranging from 55 to 80%, using a mixture of boiling Ac₂O and hydriodic acid,⁸ and the structures of the resulting 5-hy-

^{*} To whom correspondence should be addressed. Tel: +27 46 603 8254. Fax: +27 46 622 5109. E-mail: P.Kaye@ru.ac.za.

Table 1. Summary of Artemia salina Biological Assay Data for
Compounds $1a - e^a$

		95% confidence interval (μ g.mL ⁻¹)	
compd	LC_{50} (µg mL ⁻¹)	upper limit	lower limit
1a	112.2	94.8	132.9
1b	39.0	35.7	42.6
1c	31.5	27.4	36.4
1d	23.8	21.2	26.8
1e	516.6	445.4	599.2

^{*a*} Estimates of median lethal concentrations obtained using the trimmed Spearman–Karber method.⁹

Table 2. Summary of Artemia salina Biological Assay Data for
Compounds $\mathbf{8a-e}^a$

		95% confidence interval (µg.mL ⁻¹)	
compd	LC_{50} (µg mL ⁻¹)	upper limit	lower limit
8 a	315.1	223.9	443.3
8b	200.1	182.3	219.7
8 c	106.0	95.0	118.3
8d	94.2	82.5	107.5
8e	247.3	217.1	281.8

^a Estimates of median lethal concentrations obtained using the trimmed Spearman-Karber method.⁹

droxy-7-methoxychromone derivatives (1a-e) were confirmed by HREIMS and spectroscopic (IR, ¹H and ¹³C NMR) analysis. The spectroscopic data obtained for 5-hydroxy-2-isopropyl-7-methoxychromone (1d) corresponded to those reported for the natural product.⁴

To evaluate the biological activity of the 2-alkyl-5hydroxy-7-methoxychromones (1a-e) and their 5,7-dimethoxy precursors (8a-e), Artemia salina larvicidal bioassays were performed using the method reported by Solis et al.⁹ The trimmed Spearman-Karber method¹⁰ was used to obtain estimates of median lethal concentrations of the A. salina mortality data for compounds **1a**-**e** and **8a**-**e**. The LC₅₀ values obtained for the monomethoxy analogues **1a**–**e** (Table 1) indicate that they are, in general, considerably more active than the dimethoxychromone derivatives 8a-e (Table 2). These data are consistent with the observation by Nohara and co-workers¹¹ that the presence of hydroxyl groups on the homocyclic ring is important for biological activity in chromone systems. While compounds 1a-d all exhibit significant cytotoxicity (LC₅₀: 23-112 ppm), the 2-benzyl derivative **1e** (LC₅₀: 517 ppm) appears to be even less active than the dimethoxy derivatives (LC_{50} : 94-315 ppm). Interestingly, of all the compounds examined, 5-hydroxy-2-isopropyl-7-methoxychromone (1d) proved to be most toxic against A. salina.

The EIMS fragmentation patterns of the monomethoxychromones 1a-e and their dimethoxy analogues 8a-ewere investigated using a combination of low-resolution, high-resolution, and B/E linked-scan data. The fragmentation patterns proposed for 5-hydroxy-2-isopropyl-7-methoxychromone 1d are outlined in Scheme 3 (Supporting Information) and are, largely, representative of the series **1a**-e. The base peak at m/z 234 corresponds to the molecular ion Id, which appears to fragment via five major pathways (A, B, C, D, and E). In path A, loss of a hydrogen atom leads to the resonance-stabilized, tertiary carbocation **IId** (m/z 233), decarbonylation of which affords the ringcontracted benzofuran carbocation IVd (m/z 205). Such ring contractions are typical of chromone derivatives.¹² In path B, loss of a methyl radical from the molecular ion gives the resonance-stabilized, secondary carbocation fragment **IIId** (*m*/*z* 219), which, like fragment **IId**, undergoes decarbonylation to give the analogous, ring-contracted fragment **VId** (m/z 191). In path C, elimination of HCHO, characteristic of aromatic methyl ethers,¹³ affords the radicalcation **Vd** (m/z 204), subsequent decarbonylation of which leads to yet another ring-contracted fragment, **VIId** (m/z 176). In path D, the molecular ion **Id** undergoes the expected retro-Diels–Alder reaction (RDA), characteristic of the chromone nucleus,¹² and elimination 2-methyl-1-butyne, affording the ketene **IXd** (m/z 166); successive decarbonylation then gives the cyclopentadienyl fragments **Xd** (m/z 138) and **XId** (m/z 110). The formation of fragment **VIIId** (m/z 167) (path E) from the molecular ion is attributed to the [RDA+H]⁺ process, which is also common in chromone derivatives;¹² subsequent deprotonation provides an alternative route to fragment **IXd**.

While most of the fragments of types **I**–**XI** were observed in the mass spectra of the analogues **1a**–**c**,**e**, additional fragments, which are supported by the linked-scan data and which arise from the presence of the phenyl group, were observed for the 2-benzyl derivative **1e** (Scheme 4, Supporting Information). Thus, formation of fragment **XIIe** (m/z 115) is attributed to heterolytic fission of the molecular ion via an RDA-type process; in this case, however, effective stabilization presumably accounts for the formation of the benzylic-propargylic carbocation. The tropylium cation **XIIIe** (m/z 91) and the phenyl cation **XIVe** (m/z 77) are typical of alkyl benzenes. Not surprisingly, the fragmentations exhibited by 2-isopropyl-5,7-dimethoxychromone (**8d**) and its side-chain analogues (**8a**–**c** and **8e**) correlate closely with those of the monomethoxy compounds **1a**–**e**.¹⁴

Experimental Section

General Experimental Procedures. IR spectra were recorded on a Perkin-Elmer Spectrum 2000 FT-IR spectrometer. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker Avance 400 MHz NMR spectrometer and are referenced using the solvent signals. Low-resolution mass spectra were recorded on a Finnigan-Mat GCQ mass spectrometer, and high-resolution spectra were obtained on a VG70-SEQ double-focusing magnetic sector instrument by Dr. P. Boshoff at the Mass Spectrometry Unit, Cape Technikon, Cape Town. The experimental procedures are illustrated by the following examples.

Preparation of 5-Hydroxy-2-isopropyl-7-methoxychromone (1d). A solution of 2-isopropyl-5,7-dimethoxychromone (**8d**; 50 mg, 0.20 mmol), Ac₂O (1.01 mL, 10.7 mmol), and HI (d 1.7; 1.52 mL, 20.2 mmol) was heated at 115 °C for 30 min. The reaction mixture was cooled and then diluted with aqueous NaHSO₃. The resulting solution was neutralized with NaHCO₃, and the precipitated solid filtered off and washed with H₂O. Flash chromatography on silica gel [elution with hexane–EtOAc (5:1)] afforded **1d** as a pale yellow solid (26 mg, 55%): mp 44–46 °C (lit.,⁴ 40–43 °C); IR, ¹H and ¹³C NMR, EIMS, and HREIMS data were consistent with literature values.⁴

Preparation of 2'-Hydroxy-4',6'-dimethoxyacetophenone (5).⁷ A stirred solution of 2',4',6'-trihydroxyacetophenone (**4**; 5.0 g, 30 mmol), Me₂SO₄ (5.3 mL, 56 mmol), and anhydrous K₂CO₃ (8.2 g, 56 mmol) in acetone (90 mL) was boiled under reflux for 5 h. The reaction mixture was filtered and evaporated in vacuo. Recrystallization of the solid residue from petroleum ether (bp 80–100 °C)–hexane (1:9) afforded **5** as a pale yellow solid (5.2 g, 90%): mp 75–77 °C (lit.,¹⁵ 77–79 °C). IR, ¹H and ¹³C NMR, EIMS, and HREIMS data were consistent with literature values.¹⁵

Preparation of 2-Isopropyl-5,7-dimethoxychromone (8d). A mixture of 2'-hydroxy-4',6'-dimethoxyacetophenone (5; 1.0 g, 5.1 mmol) and ethyl isobutyrate (3.0 mL, 22 mmol) was added dropwise to a stirred dispersion of NaOEt [generated in situ by adding Na metal (0.51 g, 22 mmol) to dry EtOH (4.0 mL)]. The resulting mixture was boiled gently under reflux for 8 h, during which time, a thick yellow slurry was formed. After cooling, the reaction mixture was poured into Et₂O (30 mL) and, after standing for 2 h, the sodium salt was filtered off, washed with Et₂O, and dissolved in ice-cold H₂O (15 mL). The resulting solution was acidified with HOAc and then extracted with Et₂O (3 \times 30 mL). The combined ethereal extracts were dried (MgSO₄) and evaporated in vacuo to afford a brick-red residue indicated, by ¹H NMR spectroscopy, to contain a mixture of 1-(2-hydroxy-4,6-dimethoxyphenyl)-4methyl-1,3-pentanedione (as an enol tautomer, formulated as 6d) and 2-hydroxy-2-isopropyl-5,7-dimethoxychromanone (7d), which was used without further purification. The crude mixture, together with glacial HOAc (5.0 mL) and concentrated H_2SO_4 (0.1 mL), was boiled under reflux for 4 h. The hot solution was poured into ice-cold H₂O (20 mL), and the resulting mixture was basified with 10% aqueous NaHCO₃ (20 mL) and extracted with Et₂O (3 \times 50 mL). The combined ethereal extracts were dried (MgSO₄) and evaporated in vacuo to give a light brown solid. Flash chromatography on silica gel (elution with EtOAc) afforded 8d as a white solid (0.50 g, 40%): mp 54–56 °C; IR (KBr) ν_{max} 1656 (CO) cm⁻¹; ¹H NMR $(\text{CDCl}_3 \text{ 400 MHz}) \delta 1.26 \text{ (6H, d, } J = 6.9 \text{ Hz}, 2 \times \text{CH}_3), 2.74$ (1H, q, J = 6.8 Hz, CH), 3.86 (3H, s, OCH₃), 3.91 (3H, s, OCH₃), 6.00 (1H, s, H-3), 6.32 (1H, d, J = 2.2 Hz, H-6) and 6.42 (1H, d, J = 2.2 Hz, H-8); ¹³C NMR (CDCl₃, 100 MHz) δ 19.9 (q, 2 \times CH₃), 32.5 (d, CH), 55.6 (q, OCH₃), 56.3 (q, OCH₃), 92.6 (d, C-8), 95.9 (d, C-6), 108.9 (d, C-3), 109.0 (s, C-4a), 160.2 (s, C-8a), 160.9 (s, C-5), 163.8 (s, C-7), 171.0 (s, C-2), and 177.9 (s, C=O); EIMS m/z 248 [M⁺] (100); HREIMS m/z 248.1049 (calcd for C₁₄H₁₆O₄, 248.1049).

Compounds **1a**,⁸ **8a**,⁸ **8b**,¹⁶ and **8c**¹⁷ have been reported previously. Analytical data for other, new compounds prepared in this study are as follows.

2-Ethyl-5-hydroxy-7-methoxychromone (1b): brown solid [from hexane–EtOAc (8:2), 150 mg, 80%]; mp 101–103 °C; IR (KBr) ν_{max} 2975 (br, OH), 1660 (CO) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.27 (3H, t, J = 7.2 Hz, CH₃), 2.61 (2H, q, J = 7.4 Hz, CH₃ CH_2), 3.87 (3H, s, OCH₃), 6.02 (1H, s, H-3), 6.32 (1H, d, J = 2.2 Hz, H-6), 6.35 (1H, d, J = 2.1 Hz, H-8), 12.67 (1H, s, OH); ¹³C NMR (CDCl₃, 100 MHz) δ 10.9 (q, CH₃), 27.4 (t, CH₃ CH_2), 55.7 (q, OCH₃), 92.4 (d, C-8), 97.9 (d, C-6), 105.4 (s, C-4), 107.2 (d, C-3), 158.1 (s, C-8a), 162.2 (s, C-5), 165.4 (s, C-7), 171.5 (s, C-2), 182.7 (s, C=O); EIMS m/z 220 (M⁺] (100); HREIMS m/z 220.0727 (calcd for C₁₂H₁₂O₄, 220.0736).

5-Hydroxy-7-methoxy-2-propylchromone (1c): pale yellow crystalline solid (after chromatography, 125 mg, 66%); mp 89–91 °C; IR (KBr) ν_{max} 2967 (br, OH), 1654 (CO) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 1.01 (3H, t, J = 7.4 Hz, CH₃), 1.75 (2H, m, CH₃*CH*₂), 2.55 (2H, t, J = 7.5 Hz, CH₃CH₂*CH*₂), 3.84 (3H, s, OCH₃), 6.02 (1H, s, H-3), 6.32 (1H, d, J = 2.1 Hz, H-6), 6.35 (1H, d, J = 2.1 Hz, H-8), 12.69 (1H, s, OH); ¹³C NMR (CDCl₃, 100 MHz) δ 13.5 (q, CH₃), 20.2 (t, CH₃*CH*₂), 36.1 (t, CH₃CH₃*CH*₂), 55.7 (q, OCH₃), 92.5 (d, C-8), 97.9 (d, C-6), 105.5 (s, C-4a), 108.1 (d, C-3), 158.2 (s, C=0); EIMS *m*/*z* 234 [M⁺] (100); HREIMS *m*/*z* 234.0894 (calcd for C₁₃H₁₄O₄, 234.0892).

2-Benzyl-5-hydroxy-7-methoxychromone (1e): white crystalline solid (from EtOH, 115 mg, 61%); mp 152–153 °C; IR (KBr) ν_{max} 3000 (br, OH), 1677 (CO) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) 3.83 (3H, s, OCH₃), 3.87 (2H, s, *CH*₂Ph), 5.96 (1H, s, H-3), 6.32 (1H, d, J = 2.1 Hz, H-6), 6.34 (1H, d, J = 2.1 Hz, H-8), 7.26–7.37 (5H, m, Ar–H) and 12.64 (1H, s, OH); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5 (t, *CH*₂Ph), 55.7 (q, OCH₃), 92.5 (d, C-8), 98.0 (d, C-6), 105.3 (s, C-4a), 108.9 (d, C-3), 127.5 (d, Ar–C), 128.9 (d, 2 x Ar–C), 129.2 (d, 2 × Ar–C), 134.5 (s,

Ar–C), 158.1 (s, C-8a), 162.1 (s, C-5), 165.4 (s, C-7), 168.8 (s, C-2), and 182.5 (s, C=O); EIMS m/z 282 [M⁺] (100); HREIMS m/z 282.0888 (calcd for C₁₇H₁₄O₄, 282.0892).

2-Benzyl-5,7-dimethoxychromone (8e): brown crystalline solid (after chromatography, 0.90 g, 60%); mp 170–171 °C; IR (KBr) ν_{max} 1664 (CO) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 3.80 (2H, s, *CH*₂Ph), 3.83 (3H, s, OCH₃), 3.89 (3H, s, OCH₃), 5.96 (1H, s, H-3), 6.30 (1H, d, J = 2.0 Hz, H-6), 6.37 (1H, d, J = 2.1 Hz, H-8), 7.25–7.34 (5H, m, Ar–H); ¹³C NMR (CDCl₃, 100 MHz) δ 39.9 (t, *CH*₂Ph), 55.6 (q, OCH₃), 56.3 (OCH₃), 92.7 (d, C-8), 96.0 (d, C-6), 109.0 (s, C-4a), 112.1 (d, C-3), 127.3 (d, Ar–C), 128.8 (d, 2 × Ar–C), 129.1 (d, 2 × Ar–C), 135.0 (s, Ar–C), 160.1 (s, C-8a), 160.9 (s, C-5), 163.8 (s, C-7), 164.8 (s, C-2), and 177.4 (s, C=O); EIMS *m*/*z* 296 [M⁺] (100); HREIMS *m*/*z* 296.1050 (calcd for C₁₈H₁₆O₄, 296.1049).

Assessment of Biological Activity. *A. salina* larvicidal bioassays were performed following the method described by Solis et al.⁹ The 10% trimmed Spearman–Karber method¹⁰ was used to obtain estimates of median lethal concentrations of *A. salina* mortality data from 12 solutions across concentration ranges of 200.0–10.0 μ g mL⁻¹ for compounds **1a**–**d**; 700.0–300.0 μ g mL⁻¹ for compound **1e**, and 400.0–50.0 μ g mL⁻¹ for compounds **8a**–**e**.

Acknowledgment. The authors thank the National Research Foundation (NRF) for a postgraduate bursary (to A.T.N.), Rhodes University for a postgraduate bursary (to C.A.G.), and the NRF and Rhodes University for generous financial support.

Supporting Information Available: Major EIMS fragmentation pathways of **1d** (Scheme 3) and **1e** (Scheme 4). This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- For part 12, see: Kaye, P. T.; Ramaite, I. D. I. S. Afr. J. Chem. 2003, 56, 25–29.
- (2) Ellis, G. P. Chromenes, Chromanones and Chromones, John Wiley and Sons: New York, 1977; p 1ff. Staunton, J. In Comprehensive Organic Chemistry, Barton, D., Ollis, W. D., Eds.; Pergamon Press: Oxford, 1974; Vol. 4, p 659ff.
- Oxford, 1974; Vol. 4, p 659ff.
 (3) López, J. A.; Barillas, W.; Gomez-Laurito, J.; Martin, G. E.; Al-Rehaily, A. J.; Zemaitis, M. A.; Schiff, P. L., Jr. *J. Nat. Prod.* 1997, 60, 24-26.
- (4) Tsui, W. Y.; Brown, G. Phytochemistry 1996, 43, 871-876.
- (5) Kaye, P. T.; Nchinda, A. T.; Gray, C. A. *J. Chem. Res. (S)* **2002**, 321–325.
- (6) Huang, C.; Da, S.; Li, Y.; Y. Li, Y. J. Nat. Prod. 1997, 60, 277–278.
 (7) Li, H.-Y.; Nehira, T.; Hagiwara, M.; Harada, N. J. Org. Chem. 1997, 62, 7222–7227.
- Mukerjee, S. K.; Seshadri, T. R.; Varadarajan, S. Proc. Indian Acad. Sci. Sect. A 1953, 37, 127–142.
- Sci. Sect. A 1953, 37, 127–142.
 (9) Solis, P. N.; Wright, C. W.; Anderson, M. M.; Gupta, P. M.; Phillipson, J. D. Planta Med. 1993, 59, 250–252.
 (10) Hamilton, M. A.; Russo, R. C.; Thurston, R. V. Environ. Sci. Technol.
- (10) Hamilton, M. A.; Russo, R. C.; Thurston, R. V. *Environ. Sci. Technol.* 1977, 11, 714–719.
- (11) Nohara, A.; Kuriki, H.; Saijo, T.; Ukawa, K.; Murata, T.; Kanno, M.; Sanno, Y. J. Med. Chem. 1975, 18, 34–37.
- Sanno, T. J. Med. Chem. 1979, 18, 54–57.
 Brogden, P. J.; Gabbutt, C. D.; Hepworth, J. D. In *Comprehensive Heterocyclic Chemistry*; Boulton, A. J., McKillop, A., Eds.; Pergamon Press: Oxford, 1984; Vol. 3, p 613.
 Dyke, S. F.; Floyd, A. J.; Sainsbury, M.; Theobald, R. S. *An Introduc-*100%
- Dyke, S. F.; Floyd, A. J.; Sainsbury, M.; Theobald, R. S. *An Introduc*tion to Organic Spectroscopy; Penguin Books: London, 1971; p 188ff.
 Nchinda, A. T. Chemical Studies of Selected Chromone Derivatives.
- (14) Nchinda, A. T. Chemical Studies of Selected Chromone Derivatives. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 2002, pp 81–85.
- (15) Morris, J.; Wishka, D. G.; Fang, Y. Synth. Commun. 1994, 26, 849– 858.
- (16) Ahluwalia, V. K.; Sunita. Indian J. Chem. Sect. B 1977, 15, 240– 241.
- (17) Rideout, J. A.; Smith, I. R.; Sutherland, M. D. Aust. J. Chem. 1976, 29, 1087–1098.

NP030097D